Lane Detection and Following Approach in Self-
Driving Miniature Vehicles

Bachelor of Science Thesis in Software Engineering and Management

IBTISSAM KAROUACH
SIMEON IVANOV

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
Goteborg, Sweden, June 2016

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Lane Detection and Following Approach in Self-Driving Miniature Vehicles

IBTISSAM KAROUACH
SIMEON IVANOV

© IBTISSAM KAROUACH, June 2016.
© SIMEON IVANOV, June 2016.

Academic Supervisor: CHRISTIAN BERGER
Examiner: JAN-PHILIPP STEGHOFER

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden June 2016

Lane Detection and Following Approach in
Self-Driving Miniature Vehicles

Ibtissam Karouach
University of Gothenburg
Software Engineering & Management BSc
karouach.ibtissam @ gmail.com

Abstract—The current work, discusses the various experiences,
lessons learned and developed novelties, regarding the lane
detection and lane following features of miniature autonomous
vehicles. Particularly, we outline the work that was conducted,
during our team’s participation in Carolo Cup 2016, which is
an international competition on autonomous vehicle, held in
Braunschweig, Germany. An overview of selected works from the
relevant literature is presented, in order to illustrate the various
techniques that are commonly adopted in order to implement
the lane detection and following functions. The findings, in this
regard, constitute of a set of the mostly referenced methods.
Additionally, our adopted approach on the matter is extensively
elucidated. The different improvements that were introduced to
the existing algorithm, are quantified and visualized through an
evaluation tool that was developed for this purpose. We conclude
that the use of the said tool for analysis, increases the quality of
the final product, which is of significant importance in embedded
system, due to the fusion of software and hardware elements.

I. INTRODUCTION

Self-driving vehicles are expected to outnumber conven-
tional vehicles by 2050, most of them capable of autonomous
driving at all times. Fully self-driving vehicles projected to hit
widespread adoption by 2035 [1][2]. Society of Automotive
Engineers (SAE) classifies full automation as vehicles able to
(a) complete a journey from point A to point B without any
input from the driver beyond setting the destination, (b) drive
at least as well as an average person, on any road, adhering
to all the traffic laws of its time and (c) handle any extreme
situation without the driver taking over, thus foregoing the
need to include any manual controls, i.e. a wheel and pedals.
Complete independent driving is designated to Level 5 on the
self-driving scale, proposed by SAE, as opposed to Level 0
where the driver needs be in constant control, but can still
have computer aid in form of warnings, e.g. collision warning
system, lane departure warning system [3].

One of the earliest and most widespread adaptation of lane
detection is in lane departure warning systems. The component
alerts the driver when the car starts steering outside the lane,
be it for the reason of drivers getting distracted or sleep
deprivation. It is especially useful on highways where the
monotony of driving may exacerbate inattention. According
to a study conducted for the International Journal of Injury
Control and Safety Promotion, trucks are responsible for 11%
of fatal road accidents, in USA alone, a major cause being
sleep deprivation [4].

Simeon Ivanov
University of Gothenburg
Software Engineering & Management BSc
simeon @ivanovsimeon.com

In the future, the widespread adoption of autonomous vehi-
cles is expected to reduce traffic accidents by a factor of 10,
as well as greatly reducing the numbers of vehicles on the
streets [5]. Other potential benefits include: increased leisure
time and productivity during commute [6], higher speed limit
[7] and removing restrictions for vulnerable groups [8].

Research on development of automated vehicles, as we
envision them today, has been conducted as early as 1980s,
Eureka PROMETHEUS Project [9] and DARPA’s ALV being
the pioneers of the decade [10]. DARPA’s ALV has success-
fully demonstrated the first road following using lidar and
computer vision [10]. By 1989, the ALV has also introduced
machine learning to their repertoire [11]. In 2004, 2005 and
2007, DARPA has organised Grand Challenge competitions in
desert and urban environments, giving students and academia
researches the opportunity to develop solutions for traversing
aforementioned scenarios and win prizes [12]. Close collab-
oration between academia, the public sector and the private
sector remains to this day.

DARPA’s Grand Challenge is not the only competition of
its kind, Carolo Cup offers similar challenges, but at a smaller
scale. The goal of the competition is to build a 1/10 scale
model self-driving car that is able to follow lane-markings,
overtake obstacles, pass intersections safely and park inside
a sideways parking strip autonomously [13]. The benefits of
operating miniature vehicles is they are substantially cheaper
and faster to build, lowering the entry level for students
participating in similar competitions and eases prototyping
in R&D. Student competitions are a good venue to gather
talent for the ever-growing autonomous vehicles industry. It
introduces the students to the field and instills confidence
in their ability to contribute, this may lead to them being
interested in considering the venture as a career path as well.
It also helps attracting the attention of the public which may
in turn inspire the new generations to pick studies related to
the field, entice new private investments as well as allow for
more government funding.

In 2016, we have participated in the Carolo Cup competition
held in Braunschweig, Germany, representing Sweden. Every
year the competition is gaining a wider spectrum, this year,
almost 600 people assisted to watch the finals and, for the
first time, has also been televised. Our team, Team Pegasus,
has taken the 10th place, receiving the least penalty points
in the lane following discipline. Our experience and the data

gathered during development serves as the basis of this study.

A. Problem Domain and Motivation

As mentioned previously, the most appealing feature of
self-driving cars is the ability to transport passengers and/or
cargo, from point A to point B, autonomously in a safe
manner. In order to achieve this goal, the vehicle should have
some form of road following system, traversing through both
rural and busy urban streets while abiding all the existing
traffic laws. Two common ways for a car to follow a road,
without modifying existing roads or attaching various sensors
on other cars, is to either use GPS tracking or machine
vision. According to the U.S. government, the accuracy of
a GPS tracking unit is approximately 7.8m at 95% confidence
level [14]. Lanes on average are between 2-4m width, so the
accuracy of a GPS is not good enough to keep a car within
its lane reliably. The other approach, machine vision, would
rely on lane markings and other road features extracted from
the footage of an on-board camera to enable lane detection
and subsequent following. However, lane markings may not
be always clearly defined, the camera view may get obstructed
by on-road traffic or other obstacles and various weather
and light conditions could affect the visibility of the camera
[15]. Nevertheless, this approach provides the most accurate
horizontal position of a car within a road and with well-thought
algorithms and hardware addons, the aforementioned problems
can be alleviated or downright eliminated. Ideally, you would
use both methods to get to set point B, machine vision and
other sensors to keep the car on its lane and avoid obstacles,
and GPS tracking to identify the vehicle’s position in relation
to the set final destination and derive a path to it.

In Carolo Cup, one of the main requirements is to be able
to follow the lanes of a previously unmet and unmapped road,
the participating teams are not informed of the layout of the
road beforehand. This outright eliminates GPS tracking. As
the participating vehicles are 1/10 size of real cars, the course
track is miniaturised accordingly so the inaccuracy of GPS is
magnified by factor of 10. Therefore, machine vision remains
the sole solution. The competition track is arranged as a circuit
and the aim of the lane following discipline is to complete as
many laps as possible in the allotted time, there is no need for a
car to go to a specific location in the track. The lane following
discipline also includes intersection scenarios, missing lane
markings and obstacles on the road. The parking discipline
may also require lane following for the purpose of keeping
the car in the middle of its lane.

Lane Detection | Extract and identify observed lane markings cor-

rectly.

Lane Following | Derive trajectory based on the extracted lane mark-
ings or other approximations. The trajectory should

lead to the middle of the lane the car is located in.

TABLE I
TAXONOMY

We define lane detection as the ability to extract and identify

observed lane markings correctly, i.e. right line, dashed line,
left line. Lane following is deriving the trajectory for the
car to aim for, e.g. pointing towards the middle of its lane,
based on the lane markings detected previously [Table IJ.
Normally, the trajectory is derived on a 2D plane, i.e. in
the camera footage, cars operate in a 3D environment so the
trajectory has to be translated accordingly. The translation
depends upon the camera used and its position in relation to
the road as each pixel in the image has to be mapped to each
point in the real world to find out what distance each pixel
represents, e.g. 1 pixel = 10cm. To ensure a smooth transition
of the car to desired trajectory, i.e. the car does not overshoot
its desired destination, a control loop of some kind has to
be implemented, e.g. a PID control. Tuning the translation
calculation is out of scope of this study as it is dependent
upon each equipments’

B. Research Goal & Research Questions

The goal of this study is to research and analyze various
implementations of lane detection and following in miniature
vehicles. Its initial purpose is to introduce the reader to
the subject matter. Later, the research outcomes are used to
supplement our own findings in implementing lane detection
and following in a miniature self-driving vehicle for the Carolo
Cup competition of 2016.

Considering the aforementioned, the following research
questions are proposed:

RQ-1: What strategies are commonly adopted for success-
ful lane detection?

RQ-2: How does adding an extract road phase affect
the precision, accuracy, and processing time of a lane
detection and following algorithm?

C. Contribution

The contributions of this study are (a) the outcome of a
literature review listing common techniques in achieving lane
detection and following in vehicles, and (b) an analysis and
showcase of a lane detection and following implementation
in a miniature vehicle with a demonstration of our proposed
improvements.

D. Scope

The main purpose of this study is to demonstrate a lane
detection and following algorithm developed to overcome the
challenges presented in the Carolo Cup competition of 2016.
Carolo Cup regulations describe the minimum requirements
for vehicles to qualify, road size and layouts and planned
scenarios. Generally, these scenarios are less complex than
what full-sized self-driving vehicles are expected to encounter
in day to day life, e.g. constant light conditions, no weather
hazards, less stationary and moving objects, single type of
intersection etc. The competition is restricted to students only,
the vehicles are 1/10 scale of a regular car and are generally
made of low-cost components. Despite addressing common
techniques of lane detection and following in all vehicles, the
literature review is to be tailored towards selecting methods
that are applicable in low-cost miniature vehicles.

E. Structure of The Article

The next section describes the methodologies we have
adopted in order to answer the established research questions.
The background section introduces the reader to machine
vision concepts, the controlled environment of the Carolo
Cup competition and the tools available in the OpenDaVINCI
framework that can help in the development of a lane detection
and following module. In the related work section, we have
outlined the common lane detection techniques we have gath-
ered from literature review and the presentation slides of the
teams who participated in the Carolo Cup competition of 2016.
Next, we describe in detail a lane detection and following
algorithm developed by team MOOSE who participated in the
2015th edition of Carolo Cup. Then, we showcase the tools
we have developed in order to benchmark the performance of
the algorithm and present the results in form of graphs. In the
next section, we present our own improvements of the lane
detection algorithm introduced previously. Finally, we discuss
and analyze our benchmarking results, our contribution to the
improvement of the lane detection algorithm, and possible
faults of this study.

II. METHODOLOGY
A. Research Question |

To address RQ1, we have conducted a literature review of
related work to identify common techniques used in achieving
lane detection and following. Generally, the study of related
work is conducted prior to commencing your own research,
its aim is to identify the status quo of your relevant field and
find gaps that your work could address. However, we have not
consulted any related work prior or during the development of
our algorithm beyond the documentation provided by the pre-
vious team whose algorithm we have been tasked to improve.
Therefore, the result of this study is to be used as a bridge to
presenting our own work, as well as help us identify potential
improvements points. This study, however, does not aim to
be an exhaustive review of all the existing lane detection and
following techniques found in the field.

Additionally, since most of the literature deals with imple-
menting lane detection in full-sized vehicles, we thought it
would be apt to include the lane detection techniques used
by Carolo Cup 2016 teams as well. The information is taken
from presentation slides that each team prepares for their
oral presentations. Unfortunately, since the competition takes
place in Germany, all the information presented has been in
German as well. As we are not proficient in German, we had
to use Google Translate to get the gist of their presentations.
Furthermore, due to the nature of oral presentations, little text
or in-depth information about their implementations remains,
we had to make sense of what little information we had
based on our personal experience in developing our own
algorithm as well as well observations of their performance
in the competition. As the oral presentations are private, we
did not have the opportunity to take notes to negate the
aforementioned faults. The presentation slides are available
by request from the Carolo Cup administration.

The literature for related work has been selected as follows:

1) Search Items: According to Kitchenham and Charters
guidelines [16], there is a procedure that consists in several
steps in defining the search items:

1) Derive search string from research questions as the most
important words.

2) Combine forms of the most significant words derived.

3) Utilize the Boolean OR to alternate between synonyms.

4) Utilize the Boolean AND to combine the most important
criteria.

5) Find the key terms.

Therefore, we have concluded that we will be selecting the
following terms to find needed material:

((lane) OR (road)) AND ((detection) OR (following))

2) Databases: We have chosen Chalmers Library as our
main search engine for the discovery of related work. The
library itself often redirects to other libraries. Most of the time,
having access to Chalmers Library will grant you access to
those foreign sources as well.

Inclusion Criteria Exclusion Criteria

Written in English Duplicate papers

Published between 2004 and 2016 Does not have relation to research

Machine vision based solutions Without bibliographic reference

Does not mention the success rate
or successful implementation of
proposed techniques

Patents, News Articles, Books

TABLE II
STUDY SELECTION CRITERIA

3) Study Selection Criteria: Our study selection criteria is
presented in Table II.

To lessen author bias and increase the accuracy of the
portrayed information, every paper and presentation slides has
been investigated and analysed by both authors of this study,
therefore the presented results are a product of the consensus
of the two.

B. Research Question II

In order to answer RQ2, we undertake the following effort:

« Introduce and explain thoroughly the lane detection and
following algorithm implemented by Team MOOSE in
the context of Carolo Cup competition of 2015, as an
illustrative case study.

« Present our modifications to their algorithm, and how it
can improve the stability and precision of their algorithm.
The modified version has been used in the context of
Carolo Cup competition of 2016 by our team - team
Pegasus.

o Showcase the tools OpenDaVINCI [17] provides and how
they can aid in the development and improvement of lane
detection and following modules.

o Demonstrate and assess the performance of both algo-
rithms with the benchmark tools we have developed.
Present the assessment results and describe how we
reached said results. The performance study is based on
the comparison of two sets of quantitative data, manually
derived ground truth data and computer generated data by
presented algorithms. The result is presented in graphs.

III. BACKGROUND
A. Machine Vision

One of the most common ways of detecting lane markings
of a previously unexplored road is through vision. Computer
vision is achieved by mounting a camera on the car. The
camera supplies images, from either photos or videos, that are
further processed by the computer. A computer sees an image

Fig. 1. An image matrix and the RGB value of the pointed pixel.

{234, 79, 33}

But the camera sees this:

T 210 M 212 19 23 NS 195 1TE 158 182 N9
THY 189 190 221 209 06 191 16T 4T 1% 15 163
114 126 140 188 176 W65 152 140 170 106 T BR
&7 103 115 154 143 142 149 153 173 100 57 57
W2 112 106 13 122 138 152 147 1@ B4 3B 66

TS O WS 134 129 113 W07 BF &9 67

as a matrix of colours [Fig. 1, 2]. Each matrix element holding
an array of integers describing the colour using a combination
of colour channels, e.g. red, green and blue; cyan, magenta,
yellow and black; shades of grey; black and white. An element,
unit or item of an image matrix is often referred to as pixel.

Unlike humans, who have had millions of years of evolution
to become one of the most advanced pattern recognition
machines on Earth, a computer does not inherently come with
this knowledge. It must be taught to make sense and form
patterns from the matrix of pixels it gets.

B. The Carolo Cup Competition

Carolo Cup is a student competition for miniature au-
tonomous vehicles, hosted in Braunschweig, Germany by
Braunschweig University of Technology [13]. The goal of
the competition is to build a 1/10 scale model of a self-
driving vehicle that is able to follow lane markings, overtake
obstacles, pass intersections safely and park inside a sideways
parking strip autonomously. Points are awarded for the best
presentations, the longest distance travelled within a set time
with and without obstacles and the fastest sideways parking
maneuver. If a car hits an obstacle and/or goes outside the
line, the team gets penalised with additional seconds added to
their elapsed time. Teams are given two tries to park, in the
event of failure after said tries, no points are awarded for the
parking discipline.

Fig. 3. Example of a course with broken lane markings and obstacles. [18]

The competition is held indoors, on a scaled down track
[Fig. 3]. The track is made of a black coloured rubber base
with white tape glued on top denoting the lane markings.
It consists of two lanes, with a dashed line in the middle
separating the two and solid lines at the ends of each lanes.
The track is supposed to emulate a rural environment, contrast
to an urban setting where the environment is much more
complex (e.g. multiple moving objects, traffic lights, multitude
of intersection types etc.).

Each lane is 400mm across while the lane markings are
20mm width, totalling to 820mm horizontally [Fig. 4]. Dis-
tance between two dashes is 200mm consistently.

Parts of lane markings are removed on purpose to increase
the difficulty of the lane following disciplines. The missing
lane markings never exceed over 1 metre length.

At least one 4-way intersection scenario is present. An in-
tersection contains a stop line at its entrance on first encounter
from the car’s perspective. The stop line is 40mm and spans
across the one lane, the lane the car is at currently [Fig.

Fig. 4. Road layout. [18]

Fig. 5. Intersection example. [18]

5]. Lane markings are always present during intersections.
Intersections do not appear directly after a curve, a straight
road segment eases the transition between the two.

The start line denotes the beginning of the track, it spans
across both lanes as opposed to intersection stop line which

covers one lane only.

Competing cars are supposed to set off from the start box
facing the start line.

The lighting conditions indoors are kept at constant 400 lux.

Fig. 6. Ackermann steering geometry. [19]

Only cars based on Ackermann steering, or variations of,
are allowed to compete [Fig. 6]. Ackermann steering is the
standard for commonly met automobiles.

C. OpenDaVINCI and Its Simulation Environment

The OpenDaVINCI framework makes communications be-
tween the software components of our car possible by enabling
the exchange of data within a local network [17].

It comes included with a simulation environment. The
simulation spawns a car on a track. We are able to get footage

Car’s perspective inside the simulated environment.

of the simulated environment from the car’s perspective [Fig.
7] as well as bird’s eye view of the map [Fig. 8]. We can
also accelerate and steer the vehicle around. The scenario
editor lets us modify or create new tracks. With these tools,
it is possible to build and test a comprehensive lane detection

and following component from scratch without having the
need to own a physical car. Since both the car and the
simulation run on the same framework, the codebase and the
algorithms remain unchanged, consequently, we can switch
between environments without any major difficulty.

Outside simulation, OpenDaVINCI also provides the ability
to make video recordings of the camera footage from the car
and play the said footage. We have made extensive use of this
feature after we have perfected the simulation environment,
building tools to both debug and benchmark our lane detection
implementation.

IV. RELATED WORK

During the literary research, we have identified a pattern
consisting of 4 common steps of successful lane detection and
following algorithm implementations: image pre-processing,
feature extraction, feature validation and trajectory calculation
[20], [21], [22].

1) Image Pre-processing: Images taken directly from the
camera often need to undergo certain preparations and trans-
formations to make information extraction easier. These can
include the use of one or multiple of the following techniques:

e Region of Interest: The image is cut to exclude unwanted
information (e.g. visible car, sky, etc) or to focus on a
particular area.

o Greyscale Transform: Convert coloured pixels into shades
of grey.

e Binary Transform: Convert coloured pixels into either
black or white given an intensity threshold (shade of
grey).

e Blur Filters: Used to reduce noise and image detail.

e Inverse Perspective Mapping: Transforms image’s per-
spective into bird’s eye view. This view makes the width
of the road equal size at any distance (i.e. in one point
perspective view, the width of the road diminishes the
further you look).

o Fisheye Dewarp: Cameras equipped with fisheye lenses
need to be transformed back to normal perspective to
simplify distance calculations.

2) Feature Extraction: Information extraction phase. Typ-
ically, the intent is to extract features that resemble lane
markings, this could be achieved by using the following
algorithms:

o Canny Edge Detection: As its name implies, the algorithm
aims to detect all the edges in an image [23]. It may
require threshold tuning to achieve the desired range of
edges.

e Hough Transform: An algorithm capable of detecting
arbitrary shapes [24]. In lane detection, Hough Transform
is mainly used to find dominant lines.

3) Feature Validation: Feature validation or fitting is the
approximation of extracted features into a smooth path using
geometric models. The generated path is later used for various
decision making processes typically for trajectory or heading
calculations. The aim of these models, usually, is to fit a
curve as accurately as possible with given features. The most
common ones we have identified are:

¢ RANSAC: A method that requires as much data as avail-
able to function as intended, it aims to remove the invalid
data by fitting a desired shape to the detected features,
i.e. a curve, a straight line, a circle, and then later applies
smoothing. RANSAC paradigm is based on three criteria:
1) error tolerance, 2) determine the compatibility with a
model and 3) apply the threshold assuming the correct
model has been found. [25]

o Kalman Filter: A process that filters out noise from given
noise data. It is based on a set of mathematical equations
that provide a recursive mean to estimate a process and
minimizes the mean of squared error, predicting a future
state from the previous ones [26].

e Polynomial Fitting: Curve fitting is a mathematical tech-
nique that is widely used in engineering applications. It
consists of fitting a set of points to a curve using Lagrange
Interpolation Polynomial. The principal of this method is
that given a set of points, the aim is to fit them in a smooth
curve that passes through the aforementioned points and
the order of the function depends on the number of
points. It can be used to approximate complicated curves.
However, a high-degree interpolation may also result in
a poor prediction of the function between points. [27]

4) Trajectory Calculation: Finally, the vehicle receives the
coordinates for desired heading. The trajectory is derived on
a 2D plane, it needs to translated to correspond to real world
coordinates - 3D plane.

In table III we present our findings of the techniques used in
related works. Table IV lists the techniques we have identified
that were adopted by the participant teams of Carolo Cup
2016. The information has been gathered from presentation
slides that each team prepares for their oral presentations.

Table IV is dominated by references to “Edge Detection”,
we believe it refers to Canny Edge detection based on resultant

images, it is difficult to infer more as the presentation slides
are not descriptive enough.

V. A LANE DETECTION AND FOLLOWING ALGORITHM

Each year, teams of students, mainly from German uni-
versities, compete in Carolo Cup. Gothenburg University and
Chalmers form conjoined computer science and engineering
based programmes. The two take a different approach, from
the universities in Germany, by creating a new team of
students, every year, from both universities’ bachelor and
master programmes. This has both benefits and drawbacks.
It gives opportunity to all students who would be interested to
participate and is a potential source for fresh ideas. However,
new teams have to either start over or continue the work of
the previous teams.

Inheriting code base is not a smooth process due to the
nature of competitions. Participants are continuously rushed to
implement and test as many features as they can. This leaves
little time for in-depth or/and up to date documentation, and
maintaining clean and readable code. Consequently, it takes
more time and effort to understand the concepts the previous
teams have developed.

The competition organisers, at Gothenburg University and
Chalmers, try to ease the transition by making students write
reports of what they have done at the end of the competition.
They also set up workshops introducing their framework
and tools, and invite previous team members to give aid in
understanding the work they have done. Our team has inherited
the code base and a car from the students who competed at
the same competition previous year, team MOOSE.

The car we have acquired came with a camera mounted
on top at its front. Road markings do not have depth, so a
single camera is sufficient. The camera came equipped with
a polarising filter and a light sensor. A polarising filter helps
minimise road glare, while a light sensor is used to measure
the luminosity (lux) of the room the car resides in. The image

Greyscale image taken from the camera.

we get from the camera is in greyscale [Fig. 9].

As the name lane following implies, our goal is to keep the
car, while it is moving forwards, inside the lane it is situated
in. Looking down at a lane, its boundaries are always parallel

to each other. The car, on the other hand, is directly facing
the lane. From its perspective, the lane boundaries are inclined
inwards, eventually converging to a point (commonly referred
to as a vanishing point) at the horizon line. The horizontal
position of the vanishing point denotes the middle of the
lane. The car then, has to strive to have its centre line match
horizontally the vanishing point to ensure its position in the
middle of the lane.

Fig. 10. Vanishing point of right lane.

This is the approach Team MOOSE have decided upon.
They have concluded that the vanishing point formed from
the convergence of the first dash line and its parallel lane right
boundary line segment is good enough to keep the car in the
middle in a straight road, while deriving from the first two
dash lines guides the car in curved roads [Fig. 10]. Thus it is
their aim to detect the first two dash lines, or at least the first
one, and the lane’s right boundary line to derive the lane’s
vanishing point. They have set the camera’s position at an
angle that permits a clear view of the first two dash lines.

Team MOOSE opted to use OpenCYV, an open source image
processing library. OpenCV provides a myriad of quality
of life improvements for manipulating images. It represents
images in a matrix data structure of its own and uses the
Cartesian coordinates system to navigate around it. The X and
Y coordinates originate at top left.

Studying their codebase and reports. We have identified 10
distinct phases to their algorithm within the 4 common steps
of lane detection and following we have established earlier in
the related work section:

A. Image Pre-processing

1) Extract Region of Interest: The full frame contains the
car and the view outside the road. Neither of them present
any useful information for lane detection and are unnecessary
noise. The smaller an image is, the faster it is to navigate
through its entirety, thus it is important to select the smallest
region of interest possible while keeping useful information
in, i.e. lane markings [Fig. 11].

2) Apply Binary Threshold: There is a high contrast be-
tween the road base and lane markings. It is enough to
represent the base road as black and lane markings as white

Related Work

Image Pre-processing

Feature Extraction

Feature Validation Trajectory Calculation

Wang et al. [28]

Canny Edge Detection
Hough Transform

B-Snake Spline Fitting Vanishing Point

Jung and Kelber [29]

Edge Distribution Function

Hough Transform

Linear-parabolic Fitting General Orientation

Inverse Perspective Mapping . RANSAC
Aly [30] Gaussian Blur Hough Transform Geometric Fitting)
Kim [31] Inverse Perspective Mapping | Machine Learning (Support Vector Machine) RANSAC -

Particle Filtering

Zhou et al. [32]

Canny Edge Detection
Hough Transform

Gabor Filter Vanishing Point

Lin et al. [33]

Region of Interest
Gaussian Blur

Sobel Edges

Bayesian Probability Model | -

Mariut et al. [34]

Region of Interest

Hough Transform

- Mid-lane Line

Ghazali et al. [35]

Region of Interest

Hough Transform

Li et al. [36]

Region of Interest

Canny Edge Detection
Hough Transform

RANSAC
Kalman Filter

Srivastava et. al [37]

Greyscale Image
Binary Image
Hybrid Median Filter

Canny Edge Detection
Hough Transform

Borkar et. al [38]

Inverse Perspective Mapping
Temporal Blurring
Greyscale Image

Hough Transform

RANSAC
Kalman Filter

Cho et al. [39]

Region of Interest
Gaussian Blur

Canny Edge Detection
Hough Transform

Low et al. [40]

Region of Interest
Greyscale Image
Erosion

Dilation

Blur

Canny Edge Detection
Hough Transform

Wang [41]

Region of Interest
Greyscale Image

Binary Image (OTSU)
Inverse Perspective Mapping

K-Means Clustering

B-Spline Fitting -

Region of interest.

TABLE III
LANE DETECTION AND FOLLOWING TECHNIQUES FOUND THROUGHOUT RELATED WORK

to be able to distinguish between the two. It makes it easier to
work with two colours instead of a range of shades. OpenCV

provides a function to convert the grey pixels to either black or
white depending on the threshold value you specify [Fig. 12].
The intensity of a grey colour is expressed as a value between
0 (black) and 255 (white), giving us 253 shades of grey. Any
grey intensity below the threshold becomes black, any higher
or equal - white. This step also removes a lot of the noise,
such as dust specks or dirt as they are seldom brighter than
the lane markings. The threshold value is dynamically defined
from the room’s ambient light measured by the light sensor.

B. Road Features Extraction

Contours of all t sha

1) Find Contours: With the help of OpenCYV, it is possible
to get the contours of all the shapes in the frame [42] [Fig.

Team Image Pre-processing Feature Extraction | Feature Validation | Trajectory Calculation
Greyscale Image
Berlin United | Region of Interest Edge Detection RANSAC Target Point
Inverse Perspective Mapping
Greyscale Image
CDLC Binary Image Points Detection RANSA(.: - Target Point
. . Polynomial Fitting
Inverse Perspective Mapping
eWolf Greyscale Image Edge Detection ? ?
Greyscale Image
GalaXIs Fisheye Dewarp Edge Direction Polynomial Fitting Mid-lane Line
Inverse Perspective Mapping
Greyscale Image
ISF Lowen Fisheye Dewarp Edge Detection Geometric Fitting Target Point
Inverse Perspective Mapping
.. Greyscale Image . N N
it:movES Region of Interest Edge Detection]]
KITCar G.reyscale Image Scanlines Polynomial Fitting Mid-lane Line
Binary Image
Greyscale Image N . - .
NaN Binary Image (OTSU) ? Polynomial Fitting Target Point
Greyscale Image
. Contrast . S .
Ostfalia Brightness Edge Detection Geometric Fitting Target Point
Region of Interest
Greyscale Image
Pegasus Region of Interest Scanlines Geometric Fitting Vanishing Point
Binary Threshold
. Greyscale Image . Kalman Filter .
TUM Phoenix Inverse Perspective Mapping Line Segments Geometric Fitting Target Point

TABLE IV
LANE DETECTION AND FOLLOWING TECHNIQUES USED BY CAROLO CUP 2016 TEAMS

13]. The shapes are separated from each other by black space.

2) Approximate Contours: OpenCV provides yet another
useful function that approximates the number of points in
a contour given distance between two points [43]. The aim
is to find the general direction of a shape at its upper
segment, therefore, all the contours are approximated to 4
points forming a rectangular shape. The dramatic reduction
of points in each contour makes the next processing steps less
time consuming as they have to process 4 points each contour
now instead of potentially hundreds of points.

3) Get Rectangles: Each approximated contour is then
transformed into an OpenCV Rotated Rectangle [Fig. 14].
This data structure helps us find out the angle each contour is
rotated at.

C. Road Features Validation and Fitting

Fig. 15.

Identified dashed and solid lines after the classification phase.

Solid Lines

1) Classify Lines: The rectangles are approximated into
lines according to their vertices and are then classified into
solid or dashed lines. The classification is done by comparing
the ratio between width and height of the rectangles or their

length compared to the longest rectangle [Fig. 15]. Sometimes,
solid lines may be miss-classified as dashed lines, this step of
the algorithm is ran again during later phases to minimise this
risk.

2) Set Road State: During the classification phase, the road
state is set to either normal mode, intersection mode or start
box mode.

Intersection mode is triggered when one of the rectangles
lays flat 90° and occupies a big portion of the image.

While the start box mode is triggered when there are two
rectangles occupying a considerable amount of the screen
while laying inwards to each other. Otherwise, the road state
is set to normal.

3) Filter Lines: Lines too far to the left or to the right side
of the screen, outside the road boundary lines, are removed.
The lines that are too far ahead relative to other existing lines
are filtered out as well as the car uses the lines closer to its
position to guide itself.

4) Characterise Lines: This step categorises the remaining
lines into left boundary line, right boundary line and tries to
form a dashed lines curve.

The dash lines are sorted by their Y axis position, from
bottom to top. The dash curve is considered to be found
when it contains two dashes. If there is only one dashed line
discovered during the classification phase, it is immediately
selected as the dash curve. At this point, it is not certain
whether the dashed curve formed is the right one, the algorithm
is ran again for the remaining dashes to create multiple dash
curves. To pick the right one, the generated dash curves are
compared to previously selected curve from earlier frames.

Fig. 16. Characterised lines.

dashLine2

The boundary lines are identified from the remaining solid
lines. Left and right lane markings are assumed to lean
inwards. The left line is assumed to have an angle of more
than 90° relative to the base of the frame, while the right line
less than 90°. Their position relative to the centre of the frame
is also considered, i.e. the right line cannot be to the left of the
centre line. The identified lines are than compared to the lines
from the last frame, the difference in their absolute positions
should be minimal [Fig. 16].

D. Trajectory Calculation

Finally, the vanishing point is derived from the supposed
eventual intersection of the dash curve and the right line. The
vanishing point of the left lane is also derived, it is used
when the car needs to switch lanes to avoid obstacles. No

vanishing point is created during intersections as there is too
much interference.

VI. BENCHMARKING THE ALGORITHM

Evaluating the performance of lane detection and following
remains challenging to this day. A standard performance
measurement process has not been established yet. Most
researchers report the success of their lane detection meth-
ods qualitatively, others report hours of successful driving.
However, without comparing the algorithm results to manually
derived standard, there is no way to quantifiably measure and
prove the results’ correctness [21][44]. Few researchers resort
to using ground truth data due the absence of public data sets
[21]. Ground truth data generation is an arduous and time
consuming task.

Team MOOSE have spent substantial time and effort man-
ually plotting vanishing points to each frame of the video
recordings they have made. They have taken a recording of the
car (radio controlled) completing the track once. Additionally,
they have split the recording into specific parts denoting the
following scenarios: straight road, left curve, right curve, S
curve, road nearby, start box, intersection, dashed line missing,
right line missing. This makes it easier to localise errors.

Unfortunately, we have discovered their data to be flawed.
They have derived the vanishing point using the first dash
line, both theirs and our algorithm depend on the second dash
line for the correct trajectory. At the times when the right
boundary line was not visible in the frame due to the car’s
acute position, they were plotting the right line at the side of
the screen instead of estimating the line outside the frame.

In order to correctly measure the performance of both
algorithms, we were bound to recreate the ground truth data.
We have developed a ground truth data creator tool to ease
the process.

A. Ground Truth Data Generation

Fig. 17. Ground truth extraction tool.
© ®® Ground Truth Data Creator
Recording Frame

Previous Frame Next Frame

Frame: 400

The ground truth data creator tool is able to load recordings
and traverse them both forwards and backwards while display-
ing each frame in the main window. Its main purpose is to let
us draw the lines that form the vanishing point in a visual and
user friendly way [Fig. 17].

The moment we plot the last point, it derives the vanishing
point automatically and draws it on the screen. If we are

unsatisfied with the result, we get the option to delete the
plotted points in the current frame and try again.

Sometimes, the car stops for one reason or another (e.g.
during intersections), for the next hundreds of frames, the lane
markings would stay the same so the vanishing point would
be identical as well. Instead of having to plot same lines over
and over again, we added the feature to copy the lines of the
previous frame. This way, we can skip the moments when the
car is stationary in seconds.

The main window contains extra space to the right side of
the frame, this allows us to guesstimate the location of lines
that are off-screen.

Another useful feature is being able to jump to any frame
number within the recording.

Once we are done plotting the vanishing points, the program
exports, into a CSV file, the coordinates of the vanishing points
and the line segments it derived from.

While we are unaware how Team MOOSE created their
ground truth data, they claim it took them at least 2 weeks to
do so. With our tool, we are able to recreate the same data set
in under a day.

B. Visualising the Data and Results

To help us visualise this data, we have built a tool that
spawns the OpenDaVINCI player and plays each recording
while exporting the calculated vanishing points, derived by
their algorithm, for every frame. The resulting CSV files are
then compared with the ground truth files.

Our final goal is to horizontally align the car’s centre line
with the vanishing point, at that moment, the car would be
perfectly positioned in the middle of the lane it is in. It would
be useful to know then, how off course the centre of the car is
relative to the vanishing point. To accomplish that, we extend
a line from the vanishing point to the base of the centre line
of the car (centre of the frame). The angle formed between
the two is the error angle we are looking for.

Thus, to regard a calculated vanishing point as correctly
identified, its error angle should match the error angle of the
ground truth data. The ground truth data itself is, however, not
perfect. As its drawn by hand, the points vary from frame to

Fig. 18. Error Angles Difference.

V.P. Ground Truth V.P. Calculated Difference

frame, it would be more appropriate to consider that the closer
the difference between calculated and ground truth error angle
is to 0, the more accurate the point is [Fig. 18].

Fig. 19. Graph of half the track.

frames

right-curve-1 D
30% straight-road-1 .
scurve ||
20% right-curve-2 [
[] missed Frames: 2%
left-curve [|
10% || pifference Between Scenarios: 7%
fulktrack [
[] worst scenario: 91%

error angles difference
10 20 30 40

All things considered, assessing the performance of the
road as a whole is not as useful in pinpointing problematic
areas. Thus, along with benchmarking the whole track, we
cut the road further into logical sections representing their
shape and scenarios, e.g. straight road, left curve, right curve,
intersection, and plot them on the same graph. For the sake
of demonstration, we have created a graph of half the road to
make it easier reading the data [Fig. 19].

Each scenario is plotted on the graph as a cumulative
distribution function (of normal distribution), this allows for
ease of assessment at a glance. Taking the left curve scenario
as an example, we can determine that the scenario has about
89% chance of each frame being less or equal 10 degrees
error angle difference. Going further to the left, we find that
the scenario has about 55% of having error angle less than or
equal to 5 and about 22% to have the error angle of 0 (the
perfect case). This can be repeated for each scenario. The full
track is always to be found somewhere in the middle of the rest
of the scenarios as the rest are derived from it. Thus, to judge
problematic areas we look at all the scenarios represented to
the right of the full track curve, they are the ones bringing the
average down.

The next step in address the scenarios would be, replaying
the recordings at the problematic areas, trying to determine the
cause for the inaccuracy, modifying the algorithm in response
and then rerunning the benchmark tool. If you are lucky, you
would have fixed the problem without badly affecting the rest
of the scenarios. While debugging, we display the results of
all the algorithm steps for each frame, thus having an in depth
understanding of when things went wrong in the process of
deriving the vanishing point.

To make it even easier to judge the situation at a glance, we
have divided the graph into 3 areas. The right-most integral
(green) represents the worst scenario, the middle integral
(yellow): difference between the best and worst scenarios and
the left-most integral (red): missing frames.

The worst case scenario is calculated by taking the mean
of all the error angles in a scenario, the scenario with the
biggest mean is the worst case scenario and the scenario with
the smallest mean is the best case scenario respectively. The

remainder is defined as missed frames, an area left to be filled.

Our aim is to move the right-most integral towards the left as
much as possible, improving the worst scenario. The secondary
aim is to lower the maximum difference error angle, although
it’s not as important, as most of the times, the high error angle
frames happen in spikes so they normally do not affect the
car’s movement in any significant way.

The perfect scenario would be to have the maximum error
angle be 0 and all the frames be at 100% probability of having
angle 0, basically forming a vertical line.

The colours have been chosen deliberately to invoke pos-
itive or negative attitude towards the presented data, green
signifying good, yellow: warning and red: undesirable.

In active development of the benchmark tool, we have cross-
checked with Matlab to ensure the correctness of our graphs.
The reason Matlab has not been used as the main source is, we
needed a one button solution for performance analysis to make
the process as streamlined as possible, without the need to own
particular software or knowledge in operating said software.

During the improvement process of our algorithm, we used
the graphs as a quantitative way of proving that our changes
are beneficial. Figure 20 presents the final results of our new
algorithm and team MOOSE’s algorithm, and compares the
two.

To be able to compare two builds accurately, both graphs
must have the same X and Y-axis scales. Consequently, for the
X-axis, we have chosen the maximum angle of 45, even though
there is a possibility of one of the graphs having a lower
maximum error angle. The angle 45 represents the maximum
angle the wheels of our car can turn. We do not necessarily
have to know the exact maximum error angle as the trend of
the worst scenario curve should give us an idea of how bad it
is.

Having Git as our source control, we conducted all our
development work in a branch. Only positive changes would
then be merged with the master branch. Table V summarises
the improvements.

VII. OUR IMPROVED LANE DETECTION ALGORITHM

While the new teams are allowed to start from scratch if
they so desire, we are strongly encouraged to improve pre-
vious team’s work instead. This particular lane detection and
following algorithm is at its third iteration of improvements.

The car we’ve inherited has been revamped extensively [Fig.
21]. The camera angle has not been changed, however, as the
vehicle’s control loop has been tuned to that particular camera
position.

The assumption that the car is always inside its lane drives
the whole algorithm. There were no efforts made on trying to
return the car back to the lane in case of erroneous prediction.
During the competition, we are allowed to use a remote
control to recover our cars, it is both faster and safer than
any automatic implementation.

The algorithm has been reduced to 7 distinct phases within
the 4 common steps identified earlier in the related work
section:

A. Image Pre-processing

1) Extract Region of Interest: This phase remains the same
as before due to the aforementioned vehicle control loop
tuning.

2) Apply Binary Threshold: Instead of relying on the light
sensor to judge the right threshold value, we decided to do
it manually ourselves. While test running the vehicle on our
track, we noticed the light sensors would report irregular
luminosity spikes which made the car respond unexpectedly.
During the competition, the light in the room is at constant
400 lux. Therefore, we manually apply the threshold value by
making a short recording and then fiddling with the threshold
value until we remove any road glare while keeping as much
road information as we can.

B. Road Features Extraction

1) Extract Road: Instead of letting OpenCV loop through
the whole image to find all the objects, we opted to go with
a more surgical approach. We aim to find the first two dash
lines, the right road line and the left road line and save their
contours immediately while scanning the image only once.
The moment a particular line is found, the algorithm should
stop searching the area.

Finding the right line:

1) The algorithm starts scanning from the centre of the
frame towards the right side, from the bottom of the
image towards the top. It is searching for a white pixel.

2) The moment it hits a white pixel, it assumes it has found
the right line so it notes the pixel’s position as part of
the right line’s contour.

3) When it encounters a white pixel for the first time in
the row it is scanning in, it notes down the position for
future use, we shall refer to it as point FWP.

4) It continues scanning towards the right until it hits a
black pixel and notes the pixel position (-1 pixel) as
part of the contour again.

5) While traversing the white pixels, it keeps the position
of the last found white pixel for future use, we shall
refer to it as LWP.

6) After it hits the black pixel or it meets the other end
of the frame, the current row stops being scanned.
Sometimes, objects stand right on top of a lane marking,
in that case, the algorithm would continue scanning until
it reaches the end of said object as well. To fix this
problem, we can set a maximum number of white points
to scan per row for a particular line, we shall refer to it
as MaxWP. If the algorithm exceeds MaxWP, it should
stop scanning and move on to the next row.

The search starts again, but in the row situated above, from
the X-coordinate of point FWP, with an offset towards the
left. The offset is necessary to be able to accommodate the
line curving towards the left. Lane markings have predictable
shapes, in our experience a 3 pixel offset is enough.

Steps 2-6 are repeated until the line ends at the top or
the algorithm reaches the end of the frame at the top. The

Fig. 20. Difference between Team Pegasus and Team MOOSE algorithm.
Team Pegasus Algorithm (2016)

Difference Between Scenarios

Team MOOSE Algorithm (2015)

Area MOOSE 2015 | Pegasus 2016 | Difference -

Missing Frames 4% 2% -2% Less is Better

Difference Between Scenarios | 31% 7% -24% Less is Better

Worst Scenario 64% 91% +27% More is Better

Frames Per Second 25-35 FPS 90-100 FPS +65 FPS (3x faster) | More is Better
TABLE V

PERFOMANCE AND PRECISION COMPARISON BETWEEN TEAM MOOSE AND TEAM PEGASUS ALGORITHM

Fig. 21. The new and improved car. Team Pegasus.

: CMER‘
& UNT 5. r En
. y._ ITY OF GOTEy TRC
1% ‘ T INBURG

e

<

algorithms knows when it reached the top of a line if it arrives,
without having met any white pixels, at X-coordinate of point
LWP + an offset. This offset could be MaxWP.

To make sure that the detected line is not actually dust,
dirt or any other type of similar noise, the algorithm counts
the number of points in the contour. If there are less points
than the specified threshold, the contour is discarded and it
continues scanning from where it left off the last time. This
kind of noise can be reduced by either increasing the binary
threshold value or/and eroding the image by set number of
pixel.

For finding the left line, the algorithm follows the same
steps as in finding the right line except it starts scanning at
the left middle side of the frame (X: 0, Y: Frame Height / 2)
and it scans towards the left with and offset towards the right,
and obviously saving relevant white points to the left line’s

contour. The camera is positioned in a such a way that the
left line is only visible in, assuming we cut the frame in 4
equal sectors, the top left sector of the image.

Finally, to locate the dash lines, the algorithm again follows
the steps for right line except it scans towards the left and
mirrors any other relevant offset directions. Once it finds the
top of the first dash line, it continues its search for the second
dash line.

The search for all the lines happen in parallel in each
row with the following priority: right line, left line, dashed
lines. The reason dashed lines are being detected last is, the
algorithm keeps the last points of both right and left lines at
that particular row to not let the dashed lines scanner come
close to either left or right lines to prevent solid lines be
detected as dashed lines. When the end of the second dash
line is found, the main loop quits so scanning of the side lines
stops at that point as well.

Fig. 22.

Resulting contours after the extract road phase.

The resulting extracted contours can be seen in Figure 22.

Fig. 23. Extract road phase steps.

 \\

An overview of the extract road steps is shown in [Fig. 23]
We use pointers to loop through and access the contents
of a matrix. Looping through a matrix using a pointer is the
fastest way, OpenCV’s at() function is designed for random
access [45]. The reach of the extract road algorithm of an

gorithm reach. As low as 8% of the image traversed.

Fig. 27. Derived vanishin,

average frame is demonstrated in Figure 24. As low as 8% of
the image traversed, much more efficient than looping through
the whole image with OpenCV’s find contours function.

Fig

. 25. Result of get rectangles phase.

2) Get Rectangles: Remains the same except there are
at most only 4 contours to process. Because there are so
few contours, approximating their points does not yield any
performance increase [Fig. 25].

C. Road Features Validation and Fitting

1) Extract and Filter Lines: Lines are approximated from
rectangles and then filtered out by their size and angles.
Same lane markings exclusion criteria apply as in the previous
algorithm.

Missing lines offset calculation.
>

ratio = scale / height

2) Draw Missing Lines: Missing lines are derived by
mirroring existing lane markings. Fig. 26 describes the calcu-
lations. The algorithm assumes that the car is perfectly aligned
on the Z-axis facing the lane. However, this is rarely the case,
especially when the car turns during curves. Still, it provides
a good enough approximation for the car to stay within the
lane until it regains sight of the next lane markings. The
competition rules do not require for the vehicles to be perfectly
centred within a lane, merely for them to stay in the lane.

D. Trajectory Calculation

Remains the same as before [Fig. 27].

VIII. ANALYSIS AND DISCUSSION
A. Results Discussion

During the related work study, we have noticed many sim-
ilarities to our implementation, specifically the pre-processing
stage. Both the Carolo Cup teams and the bibliographic
sources tend to use complex curve fitting models to derive
their lane markings. We did not have such need as our only
concern is to get the trend or the direction of the intersecting
lane markings, the benefit of not transforming the image
to a bird’s eye view. As for features extraction phase, both
the bibliographic sources and most of the Carolo Cup teams
follow the same approach. We have developed our own custom
process, more fit for the problem of detecting lane marking for
the purpose of lane following as it scans from the position of
the car outwards instead of using a more generalised approach
by scanning the whole image, from top to bottom, as we
proved to be wasteful and less precise.

As the graphs indicate, our improvements have had positive
effects over precision and stability of the inherited algorithm.
There are less missed frames, less difference between scenar-
ios and the worst case scenario is more stable.

The increase in precision is attributed to the extract road
phase. Compared to the previous algorithm, ours does not
have to guess from the multitude of shapes which of the lane
markings they belong to anymore. It detects at most 4 lines.
Since we stop scanning once we find our lane markings, the
trajectory calculation is unaffected by objects outside the road.
This has been a great boon during the parking sequence as it
has not been affected by the parked cars along the road, as
well as in the instances when there is another road nearby.
Missing lines recovery is also more reliable, even though it
does not account for Z-axis rotation.

Another big improvement is the processing speed. The pro-
cessing speed increase has been a side effect of our precision
improvement efforts. Last year’s algorithm ran at an average
35 FPS, while ours runs at round 100 FPS, effectively tripling
the speed. This increase in performance has had great effects
on the car’s lane following ability as it can process more
frames at a time thus make decisions much faster and have
a more up to date vanishing points. We were able to run the
car at greater speeds than possible before.

However, some benefits of the previous algorithm have been
lost. One of the more advanced disciplines in the competition
is lane following with obstacles on the road. The objective is

the same as in regular lane following, except the objects have
to be avoided. In preparation for this task, Team MOOSE have
added the ability to derive the vanishing point of the other lane,
so theoretically, you simply would need to follow the other
vanishing point instead. This feature is still present, however,
our algorithm only works on the right lane at the moment as
we have not planned on undertaking the overtaking discipline.
In order to make the algorithm work on the left lane, we simply
flip the scanning direction of each involved algorithm step.

Another issue arises while trying to switch lanes. Our
algorithm has no inherent ability to detect on which lane it
is, so it would not know at which point should the scanning
direction of extract road phase flip. Adding such a feature
could possibly undo the performance benefits of the new
algorithm if it involves scanning the whole frame. More lighter
solutions would be welcome such as using scan lines at
great intervals, but this method tends to be prone to noise or
busy background outside the road. The most straightforward
solution is to simply execute a blind maneuver and time it so it
at least crosses the dashed lines before it resumes to detecting
lane marking again.

One more downside is, if there are objects or neighbouring
lanes near a missing lane area, the algorithm will treat them
as a lane marking affecting the correctness of our trajectory.
However, during the competition, we have not met such cases
or they have not affected the stability of the lane following
significantly.

Previously, teams had to rely on observations of the car
running on the track to determine the effects their changes
had. The benchmark tool greatly increased our efficiency and
confidence in making changes by letting us see what areas
have been affected. If our changes did not lead to improve-
ments, the tool could at least confirm that no unexpected or
negative effects occurred.

B. Threats to Validity

A study validity is the level of trustworthiness of the
presented results [46]. We have deployed the threats of validity
model by categorising them in the following categories:

1) Internal Validity: Internal validity is defined as factors
and risks that are unknown to the person conducting the
research and can affect the researched factor [46].

In a literature review, there is always risk of author bias.
This is especially true in research that is based on summarising
and getting an understanding of the concept relayed in a paper
as it is reliant on author’s technical expertise and good will to
remain neutral. This paper is not an exception. We have tried
to minimise author bias by making both of us analyse each
paper and reach a consensus on the results, even so, we are
still bound by our technical knowledge as we are new comers
to the field.

Another problem in our related work study is the presen-
tation of the techniques used by Carolo Cup teams of 2016.
The techniques were gathered analysing the slides they have
prepared for their oral presentations. As the teams are all
German, the slides were written in German as well. We do

not posses knowledge of the German language so we had
to use Google Translate, the translations could be inaccurate.
Furthermore, the presentation slides were made for an oral
presentation which contain little information by design as
the speaker ought to relate most of it. We had to infer the
information we presented from keywords and images of the
results they have included.

2) External Validity: The lane detection algorithm we have
implemented has been created in a controlled environment
within the rules and the setting of the Carolo Cup competition.
While it may serve well in use in other similar competitions,
it is not directly immediately suitable in a full sized vehicle
on real roads as it does not handle different light and weather
conditions and complicated road layouts. However, it can be
useful as a base, a boilerplate for any efforts to implement
lane detection in full sized cars. The benchmark tool, on the
other hand, bears no such restrictions. It can be used to its
full potential and benefit from all its features benchmarking
the lane detection of a full sized car on a real road by following
the same methodology we had in our miniature vehicle.

3) Construct Validity: Construct validity knowing whether
the study has been done the way the researcher planned and
thought of to correctly answer the research questions [46].

We have not found a similar benchmark tool in quantitative
way able to compare between two builds and aim to increase
the accuracy and precision with visual results that have been
implemented before. We had to implement it ourselves. We
only found one study that highlights its importance. Addi-
tionally, we have manually entered the data and checked its
correctness with Matlab to make sure the output graphs by the
benchmark tool coincide with Matlab.

IX. CONCLUSION

This research, consists of a literature review on contempo-
rary tactics to implement the lane detection and lane following
functions in autonomous vehicles, as well as an excerpt of
the related work that was conducted during our participation
in an international competitions on autonomous vehicles in
Braunschweig, Germany. The bibliographic research provides
an overview of the most common tactics found in lane
detection implementations.

Particularly, we have outlined the findings from fourteen
published papers and have defined four phases, typically
involved in lane detection and following, which include image
pre-processing, feature extraction, feature validation and tra-
jectory calculation. Our classification of the findings, makes
apparent the most common approaches for each stage, allow-
ing us to acquire a synopsis of the state of the art work in the
field.

Next, we have extensively outlined our practical involve-
ment with the investigated functions, which were realized
on a miniature autonomous vehicle. Specifically, the prior
approach on the matter, was drastically improved, translating
into higher software quality and performance. What is more,
this was documented and quantified by a graphical evaluation
tool that we developed. The specific tool, enabled the visual

validation of the various changes that were committed, pro-
viding benchmark oriented guidelines to the developers, on
whether the code should be deployed or not. Other important
improvements to the lane detection and following approach,
that aimed to increase the performance, included a feature to
extract the “road” from an image frame. This accelerated the
volume of necessary calculations and dramatically decreased
the processing time.

However, our algorithm is not necessarily confined to minia-
ture vehicles. Even though it does not handle different light
and weather conditions, it can still be used to kick-start a
lane detection and following project from scratch even for a
full sized vehicle on real streets. Full sized vehicles can still
take full advantage of the benchmark tool we have developed
and benefit from all its features, i.e. quantifiably measure the
performance of the lane detection algorithm, by following the
same methods we applied to our miniature vehicle.

For the future, there are a lot of suggestions, that would
lead to the improvement of the lane detection and following
features. PID controller tuning, would allow for smoother tran-
sitions. Additionally, obstacle avoidance could be incorporated
to the current algorithm, therefore, increasing the product’s
functionality. Finally, a method should be devised in order to
programmatically differentiate between the two scenarios, of
the stop and start line, that are particularly valuable in the
context of the autonomous vehicles competition in Germany.

X. ACKNOWLEDGEMENTS

We would like to extend our sincerest gratitude to Dr.
Christian Berger for his support and guidance throughout
his course, the Carolo Cup competition and this study, and
for introducing us to the intricacies of the automotive in-
dustry. Special thanks to our Carolo Cup supervisors Martin
Holder and Thomas Petig for having the patience getting
our benchmark tool right and guiding us with our algorithm
improvement efforts. Furthermore, we would like to thank
Team MOOSE for taking their time in aiding us early in
the development of the new algorithm by making sure we
understand their previous implementation and giving pointers
for possible improvements. We would like to thank Bosch for
hosting a wonderful event, and giving us an opportunity to
test our car and our lane detection and following algorithm on
a foreign track, it was a good wake up call to double up our
efforts in improving the algorithm. Special thanks to Chalmers,
HiQ and Delphi Automotive for sponsoring the equipment we
needed to build the car and for our travel and stay in Germany
during the Carolo Cup competition event. We would also like
to thank Dr. Jan-Philipp Steghofer for pointing out the faults of
this study and helping us address them. And Imed Hammouda
for his support throughout our studies in our programme. Last
but not least, we would like to thank our colleagues within
team Pegasus for the great work they have done and the fun
we have had during the Carolo Cup competition of 2016.

Thank you, everyone.

[1]
[2]

[3]
[4]

[5]
[6]

[7]
[8]
[9]

[10]
[11]

[12]
[13]

[14]
[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]

[28]

[29]

(30]

(31]

(32]

[33]

REFERENCES

IHS Automotive. Emerging technologies: Autonomous cars-not if, but
when. Technical report, IHS Automotive, 2014.

Navigant Research. Advanced driver assistance systems and the evolu-
tion of self-driving functionality: Global market analysis and forecasts.
Technical report, Navigant Research, 2015.

Andreas Knapp Arne Bartels, Ulrich Eberle. System classification and
glossary on automated driving. Technical report, AdaptIVe, 2015.
Chunjiao Dong, Stephen H. Richards, Baoshan Huang, and Ximiao
Jiang. Identifying the factors contributing to the severity of truck-
involved crashes. International Journal of Injury Control and Safety
Promotion, 22(2):116-126, 2015;2013;.

PwC. Look mom, no hands!, 2013.

C. Urmson and W. ”. Whittaker. Self-driving cars and the urban
challenge. IEEE Intelligent Systems, 23(2):66—68, March 2008.
Houston Chronicle. Get ready for automated cars, 2012.

Dudley David. The driverless car is (almost) here, 2015.

Programme for a european traffic system with highest efficiency and
unprecedented safety, 1987-1995.

Robert D Leighty. Darpa alv (autonomous land vehicle) summary. 1986.
Pomerleau A. Dean. Alvinn: an autonomous land vehicle in a neural
network. 1989.

DARPA. Darpa grand challenge, 2004;2005;2007.

Braunschweig University of Technology. Carolo cup competition, 2016.
U.S. Government. Gps accuracy.

Heba Aly, Anas Basalamah, and Moustafa Youssef. Robust and ubiqui-
tous smartphone-based lane detection. Pervasive and Mobile Computing,
26:35 — 56, 2016.

Barbara Kitchenham, Rialette Pretorius, David Budgen, O. Pearl Brere-
ton, Mark Turner, Mahmood Niazi, and Stephen Linkman. Systematic
literature reviews in software engineering — a tertiary study. Information
and Software Technology, 52(8):792-805, 2010.

Christian Berger. Opendavinci - open source development architecture
for virtual, networked, and cyber-physical system infrastructures.

Nico Boh Christian Berger. Carolo cup: Rules and regulations, 2014.
Andy Dingley. Ackermann steering geometry, 2010.

Sibel Yenikaya, Gokhan Yenikaya, and Ekrem Diiven. Keeping the
vehicle on the road: A survey on on-road lane detection systems. ACM
Computing Surveys (CSUR), 46(1):1-43, 2013;2014;.

Aharon Bar Hillel, Ronen Lerner, Dan Levi, and Guy Raz. Recent
progress in road and lane detection: a survey. Machine Vision and
Applications, 25(3):727-745, 2014.

Gurveen Kaur and Dinesh Kumar. Lane detection techniques: A review.
International Journal of Computer Applications, 112(10), 2015.

John Canny. A computational approach to edge detection. [EEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-
8(6):679-698, 1986.

Richard Duda and Peter Hart. Use of the hough transformation to detect
lines and curves in pictures, 1972.

Martin Fischler and Robert Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography, 1981.

Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1):35-45, 1960.

Yajun Yang. Polynomial curve fitting and lagrange interpolation.
Mathematics and Computer Education, 47(3):224, 2013.

Yue Wang, Eam K. Teoh, and Dinggang Shen. Lane detection and
tracking using b-snake. Image and Vision Computing, 22(4):269-280,
2004.

Claudio R. Jung and Christian R. Kelber. Lane following and lane
departure using a linear-parabolic model. Image and Vision Computing,
23(13):1192-1202, 2005.

M. Aly. Real time detection of lane markers in urban streets. pages
7-12. IEEE, 2008;2014;.

ZuWhan Kim. Robust lane detection and tracking in challenging
scenarios. IEEE Transactions on Intelligent Transportation Systems,
9(1):16-26, 2008.

Shengyan Zhou, Yanhua Jiang, Jungiang Xi, Jianwei Gong, Guangming
Xiong, and Huiyan Chen. A novel lane detection based on geometrical
model and gabor filter. pages 59-64, 2010.

Qing Lin, Youngjoon Han, and Hernsoo Hahn. Real-time lane departure
detection based on extended edge-linking algorithm. pages 725-730,
2010.

[34]
[35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

F. Mariut, C. Fosalau, and D. Petrisor. Lane mark detection using hough
transform. pages 871-875. IEEE, 2012.

K. Ghazali, Rui Xiao, and Jie Ma. Road lane detection using h-maxima
and improved hough transform. pages 205-208. IEEE, 2012.

Yingmao Li, Asif Igbal, and Nicholas R. Gans. Multiple lane boundary
detection using a combination of low-level image features. pages 1682—
1687. IEEE, 2014.

Sukriti Srivastava, Ritika Singal, and Manisha Lumba. Efficient lane
detection algorithm using different filtering techniques. International
Journal of Computer Applications, 88(3), 2014.

Amol Borkar, M. Hayes, M. T. Smith, KTH, Skolan for informations-
och kommunikationsteknik (ICT), and CoS Kommunikationssystem.
A novel lane detection system with efficient ground truth generation.
IEEE Transactions on Intelligent Transportation Systems, 13(1):365—
374, 2012.

Jae-Hyun Cho, Young-Min Jang, and Sang-Bock Cho. Lane recognition
algorithm using the hough transform with applied accumulator cells in
multi-channel roi. pages 1-3. IEEE, 2014.

Chan Y. Low, Hairi Zamzuri, and Saiful A. Mazlan. Simple robust road
lane detection algorithm. pages 1-4. IEEE, 2014.

Jun Wang, Tao Mei, Bin Kong, and Hu Wei. An approach of lane
detection based on inverse perspective mapping. pages 35-38. IEEE,
2014.

Satoshi Suzuki and KeiichiA be. Topological structural analysis of
digitized binary images by border following. Computer Vision, Graphics
and Image Processing, 30(1):32-46, 1985.

Urs Ramer. An iterative procedure for the polygonal approximation of
plane curves. Computer Graphics and Image Processing, 1(3):244-256,
1972.

Alan R Weiss. Dhrystone benchmark: History, analysis, scores and
recommendations. 2002.

OpenCV Docs. How to scan images, lookup tables and time measure-
ment with opencv.

Per Runeson, Martin Host, Institutionen for datavetenskap, LTH Fac-
ulty of Engineering, Lunds universitet, Department of Computer Sci-
ences, Institutioner vid LTH, Lunds Tekniska Hogskola, Lund Univer-
sity, and Departments at LTH. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engi-
neering, 14(2):131-164, 2009.

	Cover_page_GU_SEM_bachelor (1).pdf (p.1-3)
	Bachelor_Thesis.pdf (p.4-21)

